Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuron ; 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2105658

ABSTRACT

Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.

2.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1549679

ABSTRACT

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Subject(s)
Autopsy/methods , COVID-19/mortality , COVID-19/virology , Olfactory Bulb/virology , Olfactory Mucosa/virology , Respiratory Mucosa/virology , Aged , Anosmia , COVID-19/physiopathology , Endoscopy/methods , Female , Glucuronosyltransferase/biosynthesis , Humans , Immunohistochemistry , In Situ Hybridization , Male , Microscopy, Fluorescence , Middle Aged , Olfaction Disorders , Olfactory Receptor Neurons/metabolism , Respiratory System , SARS-CoV-2 , Smell
3.
Nat Commun ; 12(1): 1726, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1142436

ABSTRACT

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha 1-Antitrypsin/pharmacology , Antibodies, Viral/blood , Antiviral Agents/pharmacology , COVID-19/blood , Caco-2 Cells , Humans , Immunoglobulin G/blood , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL